
Criteria Very good Sufficient Needs Improvement

The research question is clearly articulated and important. 
The research question is clearly stated and is 
feasible, interesting and important.

The research question is clearly stated and is feasible 
and somewhat important.

The research question is not clearly articulated and/or 
not very feasible or relevant.

The choice for the research method (e.g., regression analysis) 
is motivated well. The chosen method is appropriate and well justified.

The chosen method is appropriate but the reasoning 
could be elaborated further.

The choice of method is either unsuitable and/or the 
justification is limited or weak.

The way of deployment (e.g., PDF report, dashboard, …) is 
useful and accessible to potential knowledge users, and 
clearly communicates the conclusions of the analysis.

The deployment format is highly effective in 
communicating the conclusions of the analysis.

The deployment is functional but there is scope for 
improvement in its accessibility or clarity.

The deployment does not effectively communicate 
the findings.

The automated and reproducible workflow is of potential use 
to other students and the larger scientific community.

The workflow is very relevant and useful to the 
broader community.

The workflow is relevant but its usefulness can be 
improved through clearer documentation.

The workflow is not very relevant or lacks proper 
documentation limitng its usefulness to the broader 
community. 

The end-to-end workflow, kickstarted with one of the workflow 
templates available at Tilburg Science Hub, is made publicly 
available on GitHub. The repository contains a readme.md (in 
markdown format, so that it renders well on GitHub), which 
clearly explains the project’s goal, and provides instructions to 
potential contributors/replicators on how to run the project. 

The workflow template is good. The README.md is 
clear, well-formatted, and provides comprehensive 
instructions for contributors.

The workflow uses the template effectively. The 
README.md outlines the project's goal but could 
provide more detailed instructions for 
contributors/users (e.g. dependencies, running 
instructions).

Limited use of the workflow template and/or the 
README.md is either unclear, poorly formatted, or 
lacks essential instructions for contributors.

The project has a concise and accurate name, enticing the 
potential user to explore the workflow. An appropriate short 
name for the repository’s location is chosen (e.g., 
github.com/yourusername/investigating-airbnb). 

The project name is concise, accurate, and engaging. 
The repository URL is appropriately short and 
descriptive.

The project name is relevant but could be more 
concise or enticing. The repository URL is suitable but 
lacks a bit of clarity or appeal.

The project name is uninformative or overly complex. 
The repository URL is too long/unclear.

Additional metadata on GitHub is provided (e.g., a short 
project description), so that the repository feels and looks 
professional and complete.

Comprehensive metadata, including a clear project 
description, is provided, giving the repository a 
professional and complete appearance.

Basic metadata is present, such as a brief project 
description, but additional details would enhance the 
repository's professional look.

Metadata is missing or incomplete, making the 
repository feel unprofessional and lacking in essential 
information.

Multiple team members have actively contributed (“committed”) 
to the repository, for the entire duration of the project (i.e., do 
not just version your files at the end, but from beginning to 
end). Commit messages are accompanied by concise and 
clear commit messages (git log).

Multiple team members have contributed actively 
throughout the project. Commit messages are 
frequent, concise, and clearly describe the changes 
made.

Team members have contributed to the repository, 
but contributions are sporadic. Commit messages are 
generally clear but lack detail or consistency.

Few contributions from team members, with most 
commits concentrated near the end of the project. 
Commit messages are unclear, infrequent, or missing.

Students have made active use of GitHub Issues and the 
GitHub Project Board with the “scrum”-inspired columns 
“backlog”, and the current sprint’s “to do”, “in progress”, and 
“done”.

Active use of GitHub Issues and Project Board is 
evident, with well-maintained 'scrum'-inspired columns 
('backlog', 'to do', 'in progress', 'done') that clearly 
track project progress.

Some use of GitHub Issues and Project Board is 
present. Columns are utilized but could be better 
organized or updated more frequently to fully reflect 
project status.

Limited or no use of GitHub Issues and Project 
Board. Columns are missing, empty, or not used 
effectively to manage the project's workflow.

Students are assigning issues to one another, and 
integrating new features by means of pull requests from 
feature branches to the main branch.

Issues are actively assigned among team members, 
and new features are seamlessly integrated using pull 
requests from feature branches to the main branch.

Issues are sometimes assigned, but the process is 
inconsistent. Pull requests are used for integrating 
features, but they often lack detailed descriptions or 
peer review, and the workflow could be more 
systematic.

Issues are rarely or never assigned, and feature 
integration via pull requests is minimal or missing, 
indicating a lack of collaborative workflow.

1. Github Repository
1.1. Research Motivation

1.2. Repository structure and documentation (10%)

1.3 Breadth of contributions and way-of-working (10%)



Criteria Very good Sufficient Needs Improvement
2. Data Preparation & Analysis

All raw data files are programmatically downloaded from the 
internet. 

All raw data files are successfully and efficiently 
downloaded programmatically,

Some data files are downloaded programmatically, 
but the process is inefficient or requires manual 
intervention for certain files.

Data files are not downloaded programmatically, 
relying entirely on manual download, which affects 
the project's reproducibility.

Meaningful RMarkdown reports for (types of) raw data/input 
files are created, which allow potential users of your repository 
to understand the content of such files, and the definition of 
variables.

Comprehensive RMarkdown reports are provided for 
all types of raw data/input files. These reports clearly 
explain the content, structure, and variable 
definitions, making it easy for users to understand 
and use the data.

RMarkdown reports are created for most raw 
data/input files, but some sections lack detail or clarity 
in explaining the content and variable definitions.

RMarkdown reports are missing or lack sufficient 
information, making it difficult for users to grasp the 
content of the raw data or understand the variables.

The RMarkdown reports are properly formatted, rendered as 
HTML or PDF files, and feature information in a variety of 
modes (e.g., running text, tables, or figures).

The RMarkdown reports are well-formatted and 
rendered as high-quality HTML or PDF files. They 
effectively use a mix of text, tables, and figures to 
convey information in a clear and engaging manner.

The RMarkdown reports are rendered as HTML or 
PDF files and but could include some more variety in 
presentation (e.g., text, tables, figures). However, 
usefulness of descriptives and formatting could be 
improved.

The RMarkdown reports are poorly formatted, lack 
variety in presentation, or are not properly rendered 
as HTML or PDF files.

The rendered Markdown files are “publication-ready” - i.e., 
code that is not relevant to understanding the data or 
warning messages is hidden.

The rendered Markdown files are polished and 
publication-ready, with non-essential code and all 
warning messages effectively hidden. The 
presentation focuses solely on relevant data insights, 
enhancing readability.

The rendered Markdown files are mostly publication-
ready, but some non-relevant code or occasional 
warning messages are still visible, slightly detracting 
from the overall presentation.

The rendered Markdown files are not publication-
ready, containing unnecessary code and visible 
warning messages that clutter the document and 
distract from the main content.

2.2 Data preparation (20%)

The raw data has been prepared and cleaned, using a 
variety of common data operations in R, involving dplyr, 
tidyverse, or data.table. 

The raw data has been fully prepared and cleaned. 
The team made extensive use of various data 
operations in R, showcasing a strong understanding 
of dplyr, tidyr, and other data manipulation tools. The 
data is now fully ready for analysis, with no 
outstanding issues.

The data is prepared and ready for analysis; 
however, the process and code could have been 
more efficient, and there are minor outstanding issues 
that should be addressed to ensure optimal 
performance in the future.

The raw data preparation and cleaning process were 
minimal and lacked thoroughness. Several key data 
operations were either missing or incomplete, and the 
data is not yet ready for analysis.

Common operations are merging, aggregating, de-
deduplication, reshaping, converting dates, or using regular 
expressions. 

All necessary data operations such as merging, 
aggregating, de-duplication, reshaping, and 
converting dates have been executed efficiently. 
Regular expressions were also applied efficiently 
when needed, resulting in well-structured data.

Most common data operations, such as merging and 
reshaping, have been successfully completed. 
However, there were minor inefficiencies in the code, 
which could have been optimized further.

Basic data operations such as merging and 
reshaping were attempted but were incomplete or 
incorrect. Handling of de-duplication, converting 
dates, and regular expressions was either inefficient 
or missing, leading to data inconsistencies.

Basic programming concepts are made use of appropriately 
to increase speed and minimize errors (e.g., looping, 
vectorization, writing functions, handling errors/debugging).

Excellent use of basic programming concepts, such 
as looping and vectorization, to optimize speed and 
minimize errors. Several useful functions and 
debugging techniques are used, ensuring a robust 
data processing pipeline.

Basic programming concepts were applied sufficiently, 
with some room for improvement in optimizing the 
code. 

Programming concepts such as looping and 
vectorization were either misapplied or omitted 
entirely. The resulting code contains errors, and 
insufficient debugging.

Additional variables are created from the raw data (feature 
engineering).

Several additional useful variables were created. 
These new features add valuable insights for futher 
analysis.

Limited additional variables were created from the raw 
data, and/or they could have been more thoughtfully 
engineered to add greater value to the analysis.

No additional variables were created from the raw 
data (or) the ones created have very limited added 
value for further data analysis.

The analysis constitutes a substantial enrichment to the raw 
data. By using building blocks from the course site, for 
example, students can conduct regression analysis on the 
data. Other ways of enriching the data (e.g., text analysis 
using textblob, or any other material from the web) can also 
be incorporated.

The analysis significantly enriches the raw data by 
applying diverse and advance methods.

The analysis enriches the data by incorporating basic 
techniques.

The analysis provides minimal enrichment to the raw 
data.

Results of the analysis are deployed/unlocked, either in the 
form of a “publication-ready” PDF document (think of it as a 
manuscript), or in the form of other ways of knowledge 
dissemination (e.g., an R package with an algorithm, or a 
Shiny app, see building blocks on the course site). The way 
of deployment is well aligned with the goal of the project.

The results are deployed effectively in a professional 
format, such as a publication-ready PDF manuscript, 
a well-designed R package, or an engaging Shiny 
app. The method of dissemination is highly aligned 
with the project’s goals and ensures accessibility to 
the intended audience.

The results are presented in a clear and functional 
format, such as a PDF or another dissemination tool. 
While the deployment is aligned with the project 
goals, the presentation could benefit from further 
refinement or enhanced usability.

The deployment of results is not effectively aligned 
with the project goals. The chosen format may lack 
professionalism, clarity, or accessibility, making it 
challenging to communicate the findings to the 
intended audience. 

2.3. Analysis and deployment

2.1 Data exploration (10%)



Criteria Very good Sufficient Needs Improvement
3. Source code and Automation

The source code is clearly readable (e.g., variable names that 
are meaningful), self-documenting, and well-structured (e.g., 
headers, sections). 

The source code is highly readable, with clear and 
descriptive variable names that convey the purpose 
of each variable. The code is self-documenting with 
useful comments. It is well-organized with consistent 
formatting, logical sections, and appropriate headers. 

The source code is reasonably readable, with variable 
names that are generally meaningful, although some 
areas may benefit from more clarity. While some 
external comments are necessary, the code is still 
fairly self-explanatory. The structure of the code is 
adequate, with identifiable sections and headers, 
though improvements could be made to further 
enhance organization and flow. 

The source code lacks readability, with variable 
names that are unclear or generic, making it difficult 
to understand the purpose of each variable. The 
code is not self-documenting and lacks sufficient 
comments to convey its logic. The structure is weak, 
with inconsistent formatting, poorly defined sections, 
and missing or insufficient headers. 

The directory structure clearly reflects the pipeline stages 
(e.g., data-preparation, analysis, paper/app) of the project, 
and subdirectories for data components (e.g., gen, src, data, 
and temp, input, audit, output) have been used correctly. 

The directory structure is highly organized and mirrors 
the project's pipeline stages perfectly. Subdirectories 
for data components are correctly and consistently 
used, making it easy to navigate and understand the 
workflow. Each folder is appropriately labeled and 
logically grouped, providing clear separation of tasks 
and data.

The directory structure is mostly organized and 
generally reflects the project's pipeline stages. 
Subdirectories for data components are present and 
appropriately used, though there may be minor 
inconsistencies. The structure is functional but could 
benefit from clearer organization or labeling in some 
areas.

The directory structure is disorganized or incomplete, 
with minimal reflection of the project's pipeline stages. 
Subdirectories for data components are either missing 
or used incorrectly, making it difficult to understand 
the workflow. The overall structure requires significant 
reorganization for clarity and proper task separation.

The code runs in a linear fashion (top to bottom execution, 
without errors), and adheres to the DRY principles (for-loops 
and functions).

The code executes smoothly from top to bottom 
without any errors, following a clear and logical linear 
flow. DRY principles are well-implemented, with 
minimal repetition of code. Functions and for-loops 
are used appropriately to streamline the code, making 
it efficient and easy to maintain.

The code runs without errors in a generally linear 
fashion, though there may be occasional deviations 
in flow. DRY principles are somewhat applied, but 
there are areas with repeated code that could be 
refactored. Functions and for-loops are used, but 
improvements could be made to enhance code 
efficiency and clarity.

The code does not run smoothly, with errors or issues 
that interrupt the linear flow. There is a significant 
amount of repetitive code, showing little to no 
adherence to DRY principles. Functions and for-loops 
are underutilized, leading to inefficient code.

Code chunks follow the input-transformation-output 
(“modular”) structure, and are “stitched” together in a makefile 
that runs the entire project pipeline automatically after issuing 
the make command in the root of the repository

Code chunks are clearly modular, consistently 
following the input-transformation-output structure. 
They are well-separated and easy to understand. The 
makefile is comprehensive and correctly links the 
entire project pipeline, allowing for a seamless 
execution of the full process with the make command. 
The pipeline runs automatically and without issues 
from the root of the repository, demonstrating 
excellent organization and automation.

Code chunks generally follow the modular structure, 
though there may be occasional inconsistencies. The 
makefile is functional and stitches the code together 
reasonably well, enabling the project pipeline to run 
with the make command. However, there might be 
some minor issues or areas where the process could 
be further streamlined.

Code chunks do not clearly follow the modular 
structure, with weak separation between input, 
transformation, and output stages. The makefile is 
incomplete or ineffective, leading to difficulties in 
running the project pipeline automatically. The make 
command may not execute the pipeline properly, 
requiring significant improvements in both modularity 
and automation.

All file paths are specified relative to the current script, no 
absolute paths are used. 

All file paths are correctly specified as relative to the 
current script, ensuring portability across different 
environments. 

Most file paths are specified as relative to the current 
script, though a few absolute paths may still exist. 
While the code is generally portable, some 
adjustments are needed to eliminate absolute paths 
or correct inaccurate relative paths for full automation.

Many file paths are specified as absolute, limiting the 
portability of the code. The use of relative paths is 
minimal or inconsistent, requiring significant revisions 
to ensure the code runs smoothly across different 
environments.

The repository only tracks the version of files that need to be 
tracked (i.e., source code), and not others (e.g., generated 
files).

The repository is well-maintained, tracking only the 
necessary files, such as source code. Generated or 
temporary files are correctly excluded through the use 
of .gitignore or equivalent mechanisms. The version 
control is clean and focused, adhering to best 
practices.

The repository generally tracks the correct files, with 
most generated or unnecessary files excluded. 
However, some non-essential files may still be 
tracked, indicating that improvements could be made 
in managing exclusions (e.g., refining .gitignore).

The repository tracks many unnecessary files, such as 
generated or temporary files, cluttering the version 
control history. The .gitignore or exclusion settings are 
poorly implemented or missing, requiring significant 
improvements to focus on tracking only the essential 
files.

3.1 Source code quality (15%)

3.2 Degree of automation (10%)


